18/05/2024

# #numbertheory

## On random multiplicative functions

Let's consider a sequence $(f(p))_{p \ prime}$ of independent random variables taking values ±1 with probability 1/2, and extend $f$ to a multiplicative arithmetic function defined on the squarefree integers.

Finding an upper bound for $M(x) = \sum_{n \leq x} f(x)$ has been long studied. Wintner proved in 1944 that $M(x) \ll x^{1/2 + \varepsilon}$ a.e., later improved by Erdös who establishes $M(x) \ll \sqrt{x} (\log x)^c$. Halász then obtains in 1983 the upper bound $M(x) \ll \sqrt{x} e^{c \sqrt{(\log\log x)(\log\log \log x)}}$. In a preliminary work by Lau, Tenenbaum, Wu, the bound $M(x) \ll \sqrt{x} (\log \log x)^{5/2 + \varepsilon}$ has been obtained.

With the use of martingale methods (new in this context at this time), a generalization of the Doob inequality (Hájek-Renyi inequality) and other techniques, I improved this bound to:

$$M(x) \ll \sqrt{x} (\log \log x)^{2 + \varepsilon} \qquad\textrm{a.e.}$$

This was the goal of my work Sommes friables de fonctions multiplicatives aléatoires published in Acta Arith., 2012, as well as obtaining estimations of the type $\Psi_f(x,y)\ll \Psi(x,y)^{1/2+\varepsilon}$ on y-smooth (a.k.a. friable) integers ≤ x.

Is it possible to improve the exponent $2+\varepsilon$ further?
The question remains open (the exponent $3/2 + \varepsilon$ had been claimed in a paper – but then removed in an updated version).

## Somme d'exponentielles concernant la fonction de Möbius

Au cours de mon Master 2, en 2007, j'ai eu l'occasion de considérer une somme d'exponentielles concernant la fonction de Möbius:

$$S(x, \theta) = \sum_{n \leq x} \mu(n) e^{2 i \pi n \theta}.$$

En suivant Maier et Sankaranarayanan, il s'agissait de comparer plusieurs preuves du résultat suivant.

Théorème. Soit $\theta$ un nombre irrationnel de type $1$. Alors pour tout $\varepsilon > 0$, on a $$S(x,\theta) \ll x^{4/5 + \varepsilon},$$

où le type d'un irrationnel $\theta$ est défini par

$$\eta = \sup \{\delta > 0 : \liminf_{q \rightarrow \infty} q^\delta \| q \theta \| = 0 \}.$$

et $\| x \|$ est la distance d'un réel $x$ au plus proche entier.

Le mémoire Sur une somme d'exponentielles concernant la fonction de Möbius contient la démonstration de ce théorème ainsi qu'un contenu (très) introductif aux caractères de Dirichlet, fonctions $L$.

My personal blog.

Data / AI / Python consulting and freelancing.